วันจันทร์ที่ 24 พฤศจิกายน พ.ศ. 2557

โลก ดาราศาสตร์และอวกาศ

ซูเปอร์โนวา (supernova) เป็นการระเบิดอย่างรุนแรงของดาวฤกษ์มวลมากเมื่อสิ้นอายุขัยหรือการระเบิดของ ดาวแคระขาว ซึ่งสามารถแบ่งเป็น 2 ประเภท คือ ซูเปอร์โนวาแบบ 1 (Supernova type I) เป็นการระเบิดภายในระบบเทหวัตถุคู่ที่ดวงหนึ่งเป็นดาวแคระขาวอีกดวงเป็นดาวฤกษ์ธรรมดาหรือไม่ก็เป็นดาวแคระขาวทั้งสองดวง เมื่อดาวแคระขาวดูดกลืนมวลสารจากดาวฤกษ์อีกดวงที่เป็นสมาชิกในระบบดาวคู่ ตามหลักการ ดาวแคระขาวไม่สามารถมีมวลได้มากเกินกว่าค่าหนึ่งเรียกว่าขีดจำกัดจันทรเศขร (Chandrasekhar limit) หรือ 1.38 เท่าของมวลดวงอาทิตย์ หลังจากที่ดาวแคระขาวได้ดึงดูดมวลสารจนมีมวลเกินค่าขีดจำกัดแล้ว ดาวแคระขาวไม่สามารถรักษาสภาพเดิมได้ จึงเกิดการยุบตัวของแกนกลาง มวลที่เพิ่มขึ้นของดาวทำให้เกิดการเร่งปฎิกิริยานิวเคลียร์ พลังงานที่ถูกปล่อยออกมานี้เองที่เป็นตัวทำลายพลังงานยึดเหนี่ยวของดาวแคระขาว ทำให้มวลสารและรังสีต่างๆ ถูกปลดปล่อยออกมาทำให้ผู้สังเกตเห็นเป็นเศษซากการระเบิดเกิดขึ้นในระบบดาวคู่ ซูเปอร์โนวาชนิดนี้สามารถแบ่งเป็นชนิด Ia Ib Ic ซึ่งจะต่างกันตรงรายละเอียดในเส้นสเปกตรัม แต่ที่โด่งดังคือ ซูเปอร์โนวาชนิด Ia ที่นักดาราศาสตร์ใช้หาระยะทางของกาแล็กซี่ อีกประเภทหนึ่งคือ ซูเปอร์โนวาแบบ 2 (Supernova type II) เป็นการระเบิดที่เกิดจากการสิ้นอายุของดาวฤกษ์มวลมาก เกิดจากที่กระบวนการฟิวชันที่ใจกลางของดาวใช้เชื้อเพลิงจนหมดสิ้น ทำให้เกิดการระเบิดครั้งยิ่งใหญ่ให้อุณหภูมิสูงจนเกิดธาตุใหม่ที่หนักกว่าธาตุเหล็ก


การค้นพบซูเปอร์โนวาชนิดใหม่นี้สืบเนื่องจาก ปี ค.ศ. 2002 นักดาราศาสตร์ได้สังเกตซูเปอร์โนวาบางชนิดปรากฎคล้ายๆ ซูเปอร์โนวา Ia แต่มีความสว่างน้อยกว่า ซูเปอร์โนวาชนิดใหม่นี้เรียกว่า ซูเปอร์โนวาแบบ Iax  ซึ่งเป็นที่สนใจของนักดาราศาสตร์ในเวลานั้น ต่อมา Ryan Foley และทีมงาน จาก the Harvard-Smithsonian Center for Astrophysics (CfA) ได้ศึกษา 25 ตัวอย่างของซูเปอร์โนวา Iax พบว่า เกิดจากการที่ดาวแคระขาวได้ดูดมวลสารของดาวที่เป็นสมาชิกของระบบดาวคู่ ซึ่งมีลักษณะการเกิดคล้ายๆ ซูเปอร์โนวา Ia แต่ต่างกันที่ซูเปอร์โนวาชนิดนี้ จะมีเศษซากดาวแคระขาวหลงเหลืออยู่ ส่วนซูเปอร์โนวา Ia ดาวแคระขาวได้ถูกทำลายอย่างสมบูรณ์หลังการระเบิด ส่วนสาเหตุของการระเบิดและทำไมยังคงเหลือซากดาวแคระขาวหลังจากการระเบิดนั้นยังคงเป็นปัญหาที่ท้าทายแก่นักดาราศาสต์ในการหาคำตอบในเรื่องนี้ Foley ได้กล่าวว่า มนุษย์ได้สังเกตซูเปอร์โนวามานับพันปีแต่ไม่เคยพบซูเปอร์โนวา Iax ทั้งๆที่มีโอกาสเกิดบ่อยถึง  1 ใน 3 ของ ซูเปอร์โนวา Ia เป็นเพราะ ซูเปอร์โนวาชนิดนี้สังเกตได้ยากเนื่องจากมีความสว่างแค่หนึ่งในร้อยของความสว่างของซูเปอร์โนวา Ia และเขายังพบอีกว่า ซูเปอร์โนวา Iax ไม่พบในกาแล็กซีทรงรี (Elliptical Galaxy) ซึ่งเป็นกาแล็กซี่ที่ประกอบด้วยดาวฤกษ์ที่มีอายุมาก แสดงว่า ซูเปอร์โนวา Iax เกิดจากดาวฤกษ์ที่มีอายุน้อยอย่างไรก็ตามนักดาราศาสตร์ได้ตั้งความหวังกับกล้องโทรทัศน์ที่มีเทคโนโลยีระดับสูงในอนาคต ในการศึกษาซูเปอร์โนวา Iax และอาจได้ข้อมูลใหม่ๆ ที่ทำให้เข้าใจธรรมชาติของ ซูเปอร์โนวาชนิดนี้ต่อไป

ประวัติส่วนตัว

                                                           
                                                          ประวัติส่วนตัว


 มาจะกล่าวบทไป...
     
        อันตัวเรามีชื่อจริงว่า แพรวา สมัยบุรี ตอนนี้น้าศึกษาอยู่ชั้นม.5/1 เลขที่ของเราคือ 37 ตัวเรานั้นมีชื่อ
เล่นอัน(ไม่)ซ้ำใครว่า แพร ตอนนี้อายุเราปาเข้าไป 17 ปีแล้ว เราเกิด ณ วันที่ 9 กรกฎาคม ค.ศ.1997
เราเลือดกรุ๊ป A เราเป็นคนไทยที่มีเชื้อจีนมาจากแม่เรา เราสูงประมาณ 170 เราได้ความสูงมากจากพ่อ
เราชอบสีรุ้ง เพราะมันมีทุกสีที่เรารัก ตอนอยู่ว่างๆเราชอบนั่งอ่านหนังสือ วาดรูป ดูการ์ตูน และเรา
อาจจะแต่งcosplay เล่นบ้างถ้าเรามีเวลา เราเป็นคนชอบดูหนังแนวแฟนตาซี และไซไฟ เพราะมันน่าตื่น
เต้น ภาพสวยมากกก และเมื่อดูจบบ้างเรื่องที่เขาสร้างดีๆมันก็จะเป็นความทรงจำที่ดีต่อเรา


เมื่อเราเผาตัวเอง...

 
ตอนนั้นอายุประมาณ 5ขวบค่ะ อนุบาล 2 //ถ่ายรูปนักเรียน ใสเชียว





                              ตอนนั้นอายุประมาณ 10 ขวบค่ะ ป.4  //ถ่ายรูปบัตรนักเรียน หน้าดิบมากก


                                                                                



                               ตอนนั้นอายุ 14ค่ะ อยู่ม.2 //ถ่ายหน้าห้องเรียนกับเพื่อน กวางแทบพัง T T


                              
                             
ปัจจุบัน ม.5 ตอนนี้อายุ 17ค่ะ  //ถ่ายที่บ้านค่าา แสงสวย> <






บทที่ 8 เทคโนโลยีอวกาศ

เทคโนโลยีอวกาศ


       เทคโนโลยีอวกาศ คือการสำรวจสิ่งต่างๆที่อยู่นอกโลกของเราและสำรวจโลกของเราเองด้วย ปัจจุบันเทคโนโลยีอวกาศได้มีการพัฒนาไปเป็นอย่างมากเมื่อเทียบกับสมัยก่อน ทำให้ได้ความรู้ใหม่ๆมากขึ้น โดยองค์การที่มีส่วนมากในการพัฒนาทางด้านนี้คือองค์การนาซ่าของสหรัฐอเมริกา ได้มีการจัดทำโครงการขึ้นมากมาย ทั้งเพื่อการสำรวจดาวที่ต้องการศึกษาโดยเฉพาะและที่ทำขึ้นเพื่อศึกษาสิ่งต่างๆในจักรวาล การใช้ประโยชน์จากเทคโนโลยีอวกาศนั้นมีทั้งด้านการสื่อสาร ทำให้การสื่อสารในปัจจุบันทำได้อย่างรวดเร็ว  การสำรวจทรัพยากรโลก ทำให้ทราบว่าปัจจุบันนี้โลกมีการเปลี่ยนแปลงอย่างไรบ้าง   และการพยากรณ์อากาศก็จะทำให้สามารถเตรียมพร้อมที่จะรับกับสถานการณ์ต่างๆที่อาจจะเกิดขึ้นต่อไปได้.

กล้องดูดาว (elescope)

            เป็นอุปกรณ์ที่มีความจำเป็นในการดูดาวเป็นอย่างยิ่ง ทำให้เรามองเห็นดวงดาวที่อยู่ไกลเป็นอย่างดี เเบ่งออกเป็น 3 ชนิด ดังนี้

 1. กล้องโทรทรรศน์ชนิดสะท้อนแสง (Reflect telescope)


เป็นอุปกรณ์ที่สามารถขยายวัตถุที่อยู่ในระยะไกล เซอร์ ไอเซค นิวตัน เป็นผู้ประดิษซ์กล้องชนิดนี้ เป็นบุคคลแรก บางที่เราก็เรียก กล้องแบบนี้ว่า กล้องแบบนิวโทเนียน ประกอบด้วยกระจกเว้า กระจกระนาบ และ เลนซ์นูน

                    หลักการของกล้องโทรทัศน์ชนิดสะท้อนแสงกล้องจะรับแสงที่เข้ามากระทบกับกระจกเว้าที่อยู่ท้ายกล้องที่เราเรียกว่า Primary Mirror แล้วรวมแสง สะท้อนกับกระจกระนาบหรือ ปริซึม เราเรียกว่า Secondary Mirror ที่อยู่กลางลำกล้อง เข้าสู่เลนซ์ตาขยายภาพอีกทีหนึ่ง

                    อัตราขยายของกล้อง = ความยาวโฟกัสของกระจกเว้า / ความโฟกัสของเลนซ์ตา

                        โครงสร้างภายในของกล้องแบบนิวโทเนียน หรือ กล้องแบบสะท้อนแสง

ข้อดีของกล้องชนิดนี้
                        1. ใช้กระจกเว้าเป็นตัวรวมแสง ทำให้สามารถสร้างขนาดใหญ่มากๆได้ ซึ่งจะมีราคาถูกกว่าเลนซ์ที่มีขนาดเท่ากัน
                        2. โดยทั้วไปกล้องชนิดนี้จะมีเส้นผ่านศูนย์กลาง 5-6 นิ้วขึ้นไป ทำให้มีการรวมแสงได้มากเหมาะที่จะใช้สังเกตวัตถุระยะไกลๆ เช่น กาแลกซี เนบิวล่า เพราะมีความเข้มแสงน้อยมาก
                        3. ภาพที่ได้จากกล้องแบบสะท้อนแสง จะไม่กลับภาพซ้ายขวาเหมือนกล้องแบบหักเหแสง แต่การมองภาพอาจจะ หัวกลับบ้าง ขึ้นอยู่กับลักษณะการมองจากกล้องเพราะเป็นการมองที่หัวกล้อง ไม่ใช่ที่ท้ายกล้อง เหมือนกล้องแบบหักเหแสง

ข้อเสียของกล้องชนิดนี้

       1. การสร้างนั้นยุ่งยากซับซ้อนมาก
  2. มีกระจกบานที่สองสะท้อนภาพอยู่กลางลำกล้อง ทำให้กีดขวางทางเดินของแสง หากเส้นผ่านศูนย์กลาง กล้องเล็กมากๆ ดังนั้นกล้องแบบสะท้อนแสงนี้จะมักมีขนาดใหญ่ ตั้งแต่ 4.5 นิ้วขึ้นไป



2. กล้องโทรทรรศน์ชนิดหักเหแสง (Refract telescope)



เป็นอุปกรณ์ที่สามารถขยายวัตถุที่อยู่ในระยะไกล กาลิเลโอ เป็นบุคคลแรกที่ประดิษฐกล้องชนิดนี้ขึ้น ประกอบด้วยเลนซ์นูนอย่างน้อยสองชิ้น คือ เลนซ์วัตถุ (Object Lens)เป็นเลนซ์ด้านรับแสงจากวัตถุ ซึ่งจะมีความยาวโฟกัสยาว (Fo) และเลนซ์ตา (Eyepieces) เป็นเลนซ์ที่ติดตาเราเวลามอง ซึ่งมีความยาวโฟกัสสั้น (Fe) กว่าเลนซ์วัตถุมากๆ อัตราการขยายของกล้อง = ความยาวโฟกัสเลนซ์วัตถุ Fo /ความยาวโฟกัสเลนซ์ตา Fe

หลักการของกล้องโทรทัศน์ชนิดหักเหแสง

                    เลนซ์วัตถุจะรับแสงจากวัตถุที่ระยะไกลๆแล้วจะเกิดภาพที่ตำแหน่งโฟกัส(Fo) เสมอ แล้ว เลนซ์ตัวที่สอง หรือ เลนซ์ตา (Fe) จะขยายภาพจากเลนซ์วัตถุอีกครั้ง ซึ่งต้องปรับระยะของเลนซ์ตา เพื่อให้ภาพจากเลนซ์วัตถุที่ตำแหน่ง Fo อยู่ใกล้กับ โฟกัสของเลนซ์ตา Fe และทำให้เกิดภาพชัดที่สุดโครงสร้างภายในของกล้องแบบหักเหแสง ที่เลนซ์วัตถุมักจะให้เลนซ์สองแบบที่ทำมาจากวัสดุคนละประเภท เพื่อลดอาการคลาดสี


ข้อดีของกล้องแบบหักเหแสง
                1. เป็นกล้องพื้นฐานที่สร้างได้ไม่ยากนัก
                2. โดยทั่วไปจะมีเส้นผ่านศูนย์กลางน้อยๆจึงมีน้ำหนักเบา


ข้อเสียของกล้องแบบหักเหแสง

     1. เนื่องจากมีเส้นผ่านศูนย์กลางน้อย ทำให้ปริมาณการรับแสงน้อยไม่เหมาะใช้ดูวัตถุไกลๆอย่าง กาแลกซีและเนบิวล่า

    2. ใช้เลนซ์เป็นตัวหักเหแสง ทำให้เกิดการคลาดสีได้หากใช้เลนซ์คุณภาพไม่ดีพอ จึงต้องมีการใช้เลนซ์ หลายชิ้นประกอบกันทำให้มีราคาสูง

     3. ภาพที่ได้จากกล้องแบบหักเหแสงจะให้ภาพหัวกลับและกลับซ้ายขวา คืออ่านตัวหนังสือไม่ได้นั่นเอง ดังนั้นกล้องแบบนี้จะต้องมี diagonal prism เพื่อช่วยแก้ไขภาพ (ดูเรื่องอุปกรณ์กล้องโทรทรรศน์


3. กล้องโทรทรรศน์แบบผสม (Catadioptic telescope)


            เป็นกล้องโทรทรรศน์คุณภาพสูงที่ถูกออกแบบมาให้ใช้หลักของการหักเหและสะท้อนแสงร่วมกัน โดยหลักการโดยรวมแล้ว จะใช้กระจก 2 ชุด สะท้อนแสงกลับ ไป-มา ช่วยให้ลำกล้องสั้น เเละส่วนมากจะสามารถควบคุมระบบได้เเบบดิจิตอล เราจะพบว่า กล้องโทรทรรศน์ขนาดใหญ่ที่มี ความยาวโฟกัสมาก ดังเช่น กล้องโทรทรรศน์บนหอดูดาวต่างๆๆ มักจะเป็นกล้องชนิดนี้
หลักการของกล้องโทรทัศน์ชนิดผสม
กล้องจะรับแสงจากวัตถุที่ระยะไกลๆ ผ่านกระจกด้านหน้า ที่เราเรียกว่า Correcting Plated หรือกระจกสะสมแสง มีลักษณะเป็นเลนซ์เบื้องต้น มากระทบกระจกบานแรกที่ท้ายกล้อง ที่เราเรียกว่า เลนส์หลัก แล้วสะท้อนกลับไปที่กระจกสะสมแสง ซึ่งตรงกลางจะมี เลนส์รอง สะท้อนกลับมาที่ท้ายกล้องเข้าสู่เลนซ์ตาขยายภาพอีกทีหนึ่ง หลักการคล้ายกับกล้องแบบนิวโทเนี่ยน แต่กล้องแบบผสม จะดูภาพจากท้ายกล้อง ไม่ใช่ข้างกล้อง และภาพที่ได้ยังมีการกลับหัวและกลับซ้ายขวา ซึ่งต้องอาศัย diagonal prism ช่วยแก้ไขภาพเหมือนกับกล้องแบบหักเหแสง
                             

ดาวเทียม 



                    ดาวเทียมคือ วัตถุที่มนุษย์สร้างขึ้นไปโครจรรอบโลก เพื่อวัตถุประสงค์ทางด้านการวิจัยทางวิทยาศาสตร์ การรายงานสภาพอากาศ หรือเพื่อการลาดตระเวนทางทหาร ดาวเทียมเพื่อการวิจัยทางวิทยาศาสตร์ จะทำหน้าที่ในการ สังเกตการณ์สภาพของอวกาศ โลก ดวงอาทิตย์ ดวงจันทร์ และดาวอื่นๆ รวมถึงวัตถุประหลาดต่างๆ ในกาแลคซี่ หรือระบบสุริยจักรวาล




ส่วนประกอบ
                ดาวเทียมเป็นเครื่องยนต์กลไกที่ซับซ้อนมาก ส่วนประกอบแต่ละส่วนถูกออกแบบอย่างประณีต และมีราคาแพง ดาวเทียมดวงหนึ่งๆ จะต้องทำงาน โดยไม่มีคนควบคุมโคจรด้วยความเร็วที่สูงพอที่จะหนี จากแรงดึงดูดของโลกได้ ผู้สร้างดาวเทียมจะพยายามออกแบบให้ชิ้นส่วนต่างๆ ทำงานได้อย่างประสิทธิภาพที่สุด และราคาไม่แพงมาก ดาวเทียมมีส่วนประกอบมากมาย แต่ละส่วนจะมีระบบควบคุมการทำงานแยกย่อยกันไป ดาวเทียมจะมีอุปกรณ์เพื่อควบคุมให้ระบบต่างๆ ทำงานร่วมกัน ระบบย่อยๆ แต่ละอย่างต่างก็มีหน้าที่การทำงานเฉพาะ เช่น
            1. โครงสร้างดาวเทียม เป็นส่วนประกอบที่สำคัญมาก โครงจะมีน้ำหนักประมาณ 15 - 25% ของน้ำหนักรวม ดังนั้น จึงจำเป็นต้องเลือกวัสดุที่มีน้ำหนักเบา และต้องไม่เกิดการสั่นมากเกินที่กำหนด หากได้รับสัญญาณที่มีความถี่ หรือความสูงของคลื่นมากๆ (amptitude)

            2. ระบบเครื่องยนต์ ซึ่งเรียกว่า "aerospike" อาศัยหลักการทำงานคล้ายกับเครื่องอัดอากาศ และปล่อยออกทางปลายท่อ ซึ่งระบบดังกล่าวจะทำงานได้ดีในสภาพสูญญากาศ ซึ่งต้องพิจารณาถึงน้ำหนักบรรทุกของดาวเทียมด้วย

            3. ระบบพลังงาน ทำหน้าที่ผลิตพลังงาน และกักเก็บไว้เพื่อแจกจ่ายไปยังระบบไฟฟ้าของดาวเทียม โดยมีแผงรับพลังงาน (Solar Cell) ไว้รับพลังงานจากแสงอาทิตย์เพื่อเปลี่ยนเป็นพลังงานไฟฟ้า ให้ดาวเทียม แต่ในบางกรณีอาจใช้พลังงานนิวเคลียร์แทน

            4. ระบบควบคุมและบังคับ ประกอบด้วย คอมพิวเตอร์ที่เก็บรวมรวมข้อมูล และประมวลผลคำสั่งต่างๆ ที่ได้รับจากส่วนควบคุมบนโลก โดยมีอุปกรณ์รับส่งสัญญาณ (Radar System) เพื่อใช้ในการติดต่อสื่อสาร

            5. ระบบสื่อสารและนำทาง มีอุปกรณ์ตรวจจับความร้อน ซึ่งจะทำงาน โดยแผงวงจรควบคุมอัตโนมัติ

            6. อุปกรณ์ควบคุมระดับความสูง เพื่อรักษาระดับความสูงให้สัมพันธ์กันระหว่างพื้นโลก และดวงอาทิตย์ หรือเพื่อรักษาระดับให้ดาวเทียมสามารถโคจรอยู่ได้

            7. เครื่องมือบอกตำแหน่ง เพื่อกำหนดการเคลื่อนที่ นอกจากนี้ยังมีส่วนย่อยๆ อีกบางส่วนที่จะทำงานหลังจาก ได้รับการกระตุ้นบางอย่าง เช่น ทำงานเมื่อได้รับสัญญาณ สะท้อนจากวัตถุบางชนิด หรือทำงานเมื่อได้รับลำแสงรังสี ฯลฯ

                ชิ้นส่วนต่างๆ ของดาวเทียมได้ถูกทดสอบอย่างละเอียด ส่วนประกอบต่างๆ ถูกออกแบบสร้าง และทดสอบใช้งานอย่างอิสระ ส่วนต่างๆ ได้ถูกนำมาประกอบเข้าด้วยกัน และทดสอบอย่างละเอียดครั้งภายใต้สภาวะที่เสมือนอยู่ในอวกาศก่อนที่มัน จะถูกปล่อยขึ้นไปโคจร ดาวเทียมจำนวนไม่น้อยที่ต้องนำมาปรับปรุงอีกเล็กน้อย ก่อนที่พวกมันจะสามารถทำงานได้ เพราะว่าหากปล่อยดาวเทียมขึ้นสู่วงโคจรแล้ว เราจะไม่สามารถปรับปรุงอะไรได้ และดาวเทียมต้องทำงานอีกเป็นระยะเวลานาน ดาวเทียมส่วนมากจะถูกนำขึ้นไปพร้อมกันกับจรวด ซึ่งตัวจรวดจะตกลงสู่มหาสมุทรหลังจากที่เชื้อเพลิงหมด

ดาวเทียมประเภทต่างๆ แบ่งโดยอาศัยการทำงาน
1. ดาวเทียมสื่อสาร



 2. ดาวเทียมอุตุนิยมวิทยา



 3. ดาวเทียมเพื่อการเดินเรือ



 4. ดาวเทียมวิทยาศาสตร์


นอกจากนี้ยังมีดาวเทียมเพื่อการศึกษา ดาวเทียมสำรวจทรัพยากรโลก



 จรวดและยานอวกาศ 

                       อวกาศอยู่สูงเหนือศีรษะขึ้นไปเพียงหนึ่งร้อยกิโลเมตร แต่การที่จะขึ้นไปถึงมิใช่เรื่องง่าย เซอร์ไอแซค นิวตัน นักคณิตศาสตร์ชาวอังกฤษ ผู้คิดค้นทฤษฎีเรื่องแรงโน้มถ่วงของโลกและการเดินทางสู่อวกาศเมื่อสามร้อยปีมาแล้ว ได้อธิบายไว้ว่า หากเราขึ้นไปอยู่บนที่สูง และปล่อยก้อนหินให้หล่นจากมือ ก้อนหินก็จะตกลงสู่พื้นในแนวดิ่ง เมื่อออกแรงขว้างก้อนหินออกไปให้ขนานกับพื้น (ภาพที่ 3) ก้อนหินจะเคลื่อนที่เป็นเส้นโค้ง (A) เนื่องจากแรงลัพธ์ซึ่งเกิดจากแรงที่เราขว้างและแรงโน้มถ่วงของโลกรวมกัน หากเราออกแรงมากขึ้น วิถีการเคลื่อนที่ของวัตถุจะโค้งมากขึ้น และก้อนหินจะยิ่งตกไกลขึ้น (B) และหากเราออกแรงมากจนวิถีของวัตถุขนานกับความโค้งของโลก ก้อนหินก็จะไม่ตกสู่พื้นโลกอีก แต่จะโคจรรอบโลกเป็นวงกลม (C) เราเรียกการตกในลักษณะนี้ว่า การตกอย่างอิสระ” (free fall) และนี่เองคือหลักการส่งยานอวกาศขึ้นสู่วงโคจรรอบโลกหากเราเพิ่มแรงให้กับวัตถุมากขึ้นไปอีก เราจะได้วงโคจรเป็นรูปวงรี (D) และถ้าเราออกแรงขว้างวัตถุไปด้วยความเร็ว 11.2 กิโลเมตรต่อวินาที วัตถุจะไม่หวนกลับคืนอีกแล้ว แต่จะเดินทางออกสู่ห้วงอวกาศ (E) เราเรียกความเร็วนี้ว่า ความเร็วหลุดพ้น” (escape speed) และนี่คือหลักการส่งยานอวกาศไปยังดาวเคราะห์ดวงอื่น



        หมายเหตุ: ในทางปฏิบัติเราไม่สามารถยิงจรวดขึ้นสู่อวกาศในแนวราบได้ เพราะโลกมีบรรยากาศห่อหุ้มอยู่ ความหนาแน่นของอากาศจะต้านทานให้จรวดเคลื่อนที่ช้าลงและตกลงเสียก่อน ดังนั้นเราจึงส่งจรวดขึ้นสู่ท้องฟ้าในแนวดิ่ง แล้วค่อยปรับวิถีให้โค้งขนานกับผิวโลก เมื่ออยู่เหนือชั้นบรรยากาศในภายหลังจรวด (Rocket)เมื่อพูดถึงจรวด เราหมายถึงอุปกรณ์สำหรับสร้างแรงขับดันเท่านั้น หน้าที่ของจรวดคือ การนำยานอวกาศ ดาวเทียม หรืออุปกรณ์ประเภทอื่นขึ้นสู่อวกาศ แรงโน้มถ่วง (Gravity) ของโลก ณ พื้นผิวโลกมีความเร่งเท่ากับ 9.8 เมตร/วินาที 2 ดังนั้นจรวดจะต้องมีแรงขับเคลื่อนสูงมาก เพื่อเอาชนะแรงโน้มถ่วงของโลก

จรวดทำงานตามกฎของนิวตัน 




ข้อที่ 3 “แรงกริยา = แรงปฏิกิริยาจรวดปล่อยก๊าซร้อนออกทางท่อท้าย (แรงกริยา) ทำให้จรวดเคลื่อนที่ไปข้างหน้า (แรงปฏิกิริยา)



                เราแบ่งประเภทของจรวดตามชนิดของเชื้อเพลิงออกเป็น 2 ประเภท คือ

      -จรวดเชื้อเพลิงแข็ง มีโครงสร้างไม่สลับซับซ้อน แต่เมื่อการเผาไหม้เชื้อเพลิงเกิดขึ้นแล้ว ไม่สามารถหยุดได้

      -จรวดเชื้อเพลิงเหลว มีโครงสร้างสลับซับซ้อน เพราะต้องมีถังเก็บเชื้อเพลิงเหลว และออกซิเจนเหลว (เพื่อช่วยให้เกิดการสันดาป) ซึ่งมีอุณหภูมิต่ำกว่าจุดเยือกแข็ง และยังต้องมีท่อและปั๊มเพื่อลำเลียงเชื้อเพลิงเข้าสู่ห้องเครื่องยนต์เพื่อทำการเผาไหม้ จรวดเชื้อเพลิงเหลวมีข้อดีคือ สามารถควบคุมปริมาณการเผาไหม้ และปรับทิศทางของกระแสก๊าซได้




จรวดหลายตอน

          การนำจรวดขึ้นสู่อวกาศนั้นจะต้องทำการเผาไหม้เชื้อเพลิงจำนวนมาก เพื่อให้เกิดความเร่งมากกว่า 9.8 เมตร/วินาที2 หลายเท่า ดังนั้นจึงมีการออกแบบถังเชื้อเพลิงเป็นตอนๆ เราเรียกจรวดประเภทนี้ว่า จรวดหลายตอน” (Multistage rocket) เมื่อเชื้อเพลิงตอนใดหมด ก็จะปลดตอนนั้นทิ้ง เพื่อเพิ่มแรงขับดัน (Force) โดยการลดมวล (mass) เพื่อให้จรวดมีความเร่งมากขึ้น (กฎของนิวตัน ข้อที่ 2: ความเร่ง = แรง / มวล)ความแตกต่างระหว่างเครื่องบินไอพ่น และจรวด         เครื่องยนต์ของเครื่องบินไอพ่นดูดอากาศภายนอกเข้ามาอัดแน่น และทำการสันดาป (เผาไหม้) ทำให้เกิดแรงดันไปข้างหน้า จนปีกสามารถสร้างแรงยก (ความดันอากาศบนปีกน้อยกว่าความดันอากาศใต้ปีก) ทำให้เครื่องลอยขึ้นได้ ส่วนจรวดบรรจุเชื้อเพลิงและออกซิเจนไว้ภายใน เมื่อทำการสันดาปจะปล่อยก๊าซร้อนพุ่งออกมา ดันให้จรวดพุ่งไปในทิศตรงกันข้ามจรวดไม่ต้องอาศัยอากาศภายนอก มันจึงเดินทางในอวกาศได้ ส่วนเครื่องบินต้องอาศัยอากาศทั้งในการสร้างแรงยก และการเผาไหม้
            
                                

อุปกรณ์ที่จรวดนำขึ้นไป (Payload)

          ดังที่กล่าวไปแล้ว จรวดเป็นเพียงตัวขับเคลื่อนขึ้นสู่อวกาศ สิ่งที่จรวดนำขึ้นไปมีมากมายหลายชนิด ขึ้นอยู่กับวัตถุประสงค์หรือภารกิจ ซึ่งอาจจะมีทั้งการทหาร สื่อสารโทรคมนาคม หรืองานวิจัยทางวิทยาศาสตร์
          - ขีปนาวุธ (Missile) เป็นคำที่เรียกรวมของจรวดและหัวรบ เนื่องจากจรวดมีราคาสูง และมีพิกัดบรรทุกไม่มาก หัวรบที่บรรทุกขึ้นไปจึงมีขนาดเล็ก แต่มีอำนาจการทำลายสูงมาก เช่น หัวรบนิวเคลียร์
          - ดาวเทียม (Satellite) หมายถึง อุปกรณ์ที่ส่งขึ้นไปโคจรรอบโลก เพื่อใช้ประโยชน์ในด้านต่าง ๆ เช่น ถ่ายภาพ โทรคมนาคม ตรวจสภาพอากาศ หรืองานวิจัยทางวิทยาศาสตร์
          - ยานอวกาศ (Spacecraft) หมายถึง ยานพาหนะที่โคจรรอบโลก หรือเดินทางไปยังดาวดวงอื่น อาจจะมีหรือไม่มีมนุษย์เดินทางไปด้วยก็ได้ เช่น ยานอะพอลโล่ ซึ่งนำมนุษย์เดินทางไปดวงจันทร์
          - สถานีอวกาศ (Space Station) หมายถึง ห้องปฏิบัติการในอวกาศ ซึ่งมีปัจจัยสนับสนุนให้มนุษย์สามารถอาศัยอยู่ในอวกาศได้นานนับเดือน หรือเป็นปี สถานีอวกาศส่วนมากถูกใช้เป็นห้องปฏิบัติการทางวิทยาศาสตร์ เพื่อประโยชน์ในการวิจัย ทดลอง และประดิษฐ์คิดค้นในสภาวะไร้แรงโน้มถ่วง สถานีอวกาศที่ใช้งานอยู่ในปัจจุบัน ได้แก่ สถานีอวกาศนานาชาติ ISS (International Space Station)
                                           
                                       

 นักบินอวกาศ     


              


      นักบินอวกาศ คือ บุคคลที่เดินทางไปกับยานอวกาศ ไม่ว่าจะไปในฐานะใด และไม่ว่าจะไปด้วยยานอวกาศแบบไหน ทั้งที่โคจรรอบโลก (ในระยะสูงจากพื้นราว 80-100 กิโลเมตรขึ้นไป)หรือที่เดินทางออกไปยังตำแหน่งอื่นใดนอกวงโคจรของโลก
สภาพแวดล้อมในอวกาศ

      อวกาศเป็นสภาวะไร้อากาศและแรงโน้มถ่วง ดังนั้นการเคลื่อนที่จึงไร้แรงเสียดทานและความเร่ง ยานอวกาศหรือนักบินอวกาศเคลื่อนที่ไปข้างหน้า ด้วยการจุดจรวดขนาดเล็ก และจุดจรวดด้านตรงข้ามด้วยแรงที่เท่ากันเมื่อต้องการจะหยุด (ภาพที่ 5)
บนอวกาศเต็มไปด้วยรังสีคลื่นสั้นซึ่งมีพลังงานสูง ดาวเทียมและยานอวกาศอาศัยพลังงานเหล่านี้ด้วยการใช้เซลล์พลังงานแสงอาทิตย์ อย่างไรก็ตาม รังสีคลื่นสั้นเหล่านี้มีอานุภาพในการกัดกร่อนสสาร ดังจะเห็นว่ายานอวกาศและดาวเทียมส่วนมากถูกห่อหุ้มด้วยโลหะพิเศษ สีเงิน หรือสีทอง อุปกรณ์ทุกอย่างที่ใช้ในอวกาศถูกสร้างขึ้นด้วยวัสดุชนิดพิเศษ จึงมีราคาแพงมากบนพื้นผิวโลกมีบรรยากาศคอยทำหน้าที่กรองรังสีคลื่นสั้นที่เป็นอันตรายต่อสิ่งมีชีวิต แต่ในอวกาศไม่มีเกราะกำบัง ในขณะที่นักบินอวกาศออกไปทำงานข้างนอกยาน พวกเขาจะต้องสวมใส่ชุดอวกาศ ซึ่งออกแบบมาเพื่อจำลองสภาพแวดล้อมที่อยู่บนโลก กล่าวคือ ปรับอุณหภูมิให้พอเหมาะ มีออกซิเจนให้หายใจ มีแรงดันอากาศเพื่อป้องกันมิให้เลือดซึมออกตามผิวหนัง และรังสีจากดวงอาทิตย์




















บทที่ 7ระบบสุริยะ

ระบบสุริยะ



   ระบบสุริยะ คือระบบดาวที่มีดาวฤกษ์เป็นศูนย์กลาง และมีดาวเคราะห์ (Planet) เป็นบริวารโคจรอยู่โดยรอบ เมื่อสภาพแวดล้อมเอื้ออำนวย ต่อการดำรงชีวิต สิ่งมีชีวิตก็จะเกิดขึ้นบนดาวเคราะห์เหล่านั้น หรือ บริวารของดาวเคราะห์เองที่เรียกว่าดวงจันทร์ (Satellite) นักดาราศาสตร์เชื่อว่า ในบรรดาดาวฤกษ์ทั้งหมดกว่าแสนล้านดวงในกาแลกซี่ทางช้างเผือก ต้องมีระบบสุริยะที่เอื้ออำนวยชีวิตอย่าง ระบบสุริยะที่โลกของเราเป็นบริวารอยู่อย่างแน่นอน เพียงแต่ว่าระยะทางไกลมากเกินกว่าความสามารถในการติดต่อจะทำได้ถึง

      ที่โลกของเราอยู่เป็นระบบที่ประกอบด้วย ดวงอาทิตย์ (The sun) เป็นศูนย์กลาง มีดาวเคราะห์ (Planets) 9 ดวง ที่เราเรียกกันว่า ดาวนพเคราะห์ ( นพ แปลว่า เก้า) เรียงตามลำดับ จากในสุดคือ ดาวพุธ ดาวศุกร์ โลก ดาวอังคาร ดาวพฤหัส ดาวเสาร์ ดาวยูเรนัส ดาวเนปจูน ดาวพลูโต



     และยังมีดวงจันทร์บริวารของ ดวงเคราะห์แต่ละดวง (Moon of sattelites) ยกเว้นเพียง สองดวงคือ ดาวพุธ และ ดาวศุกร์ ที่ไม่มีบริวาร ดาวเคราะห์น้อย (Minor planets) ดาวหาง (Comets) อุกกาบาต (Meteorites) ตลอดจนกลุ่มฝุ่นและก๊าซ ซึ่งเคลื่อนที่อยู่ในวงโคจร ภายใต้อิทธิพลแรงดึงดูด จากดวงอาทิตย์ ขนาดของระบบสุริยะ กว้างใหญ่ไพศาลมาก เมื่อเทียบระยะทาง ระหว่างโลกกับดวงอาทิตย์ ซึ่งมีระยะทางประมาณ 150 ล้านกิโลเมตร หรือ 1au.(astronomy unit) หน่วยดาราศาสตร์ กล่าวคือ ระบบสุริยะมีระยะทางไกลไปจนถึงวงโคจร ของดาวพลูโต ดาว เคราะห์ที่มีขนาดเล็กที่สุด ในระบบสุริยะ ซึ่งอยู่ไกล เป็นระยะทาง 40 เท่าของ 1 หน่วยดาราศาสตร์ และยังไกลห่างออก ไปอีกจนถึงดงดาวหางอ๊อต (Oort's Cloud) ซึ่งอาจอยู่ไกลถึง 500,000 เท่า ของระยะทางจากโลกถึงดวงอาทิตย์ด้วย ดวงอาทิตย์มีมวล มากกว่าร้อยละ 99 ของ มวลทั้งหมดในระบบสุริยะ ที่เหลือนอกนั้นจะเป็นมวลของ เทหวัตถุต่างๆ ซึ่ง ประกอบด้วยดาวเคราะห์ ดาวเคราะห์น้อย ดาวหาง และอุกกาบาต รวมไปถึงฝุ่นและก๊าซ ที่ล่องลอยระหว่าง ดาวเคราะห์ แต่ละดวง โดยมีแรงดึงดูด (Gravity) เป็นแรงควบคุมระบบสุริยะ ให้เทหวัตถุบนฟ้าทั้งหมด เคลื่อนที่เป็นไปตามกฏแรง แรงโน้มถ่วงของนิวตัน ดวงอาทิตย์แพร่พลังงาน ออกมา ด้วยอัตราประมาณ 90,000,000,000,000,000,000,000,000 แคลอรีต่อวินาที เป็นพลังงานที่เกิดจากปฏิกริยาเทอร์โมนิวเคลียร์ โดยการเปลี่ยนไฮโดรเจนเป็นฮีเลียม ซึ่งเป็นแหล่งความร้อนให้กับดาว ดาวเคราะห์ต่างๆ ถึงแม้ว่าดวงอาทิตย์ จะเสียไฮโดรเจนไปถึง 4,000,000 ตันต่อวินาทีก็ตาม แต่นักวิทยาศาสตร์ก็ยังมีความเชื่อว่าดวงอาทิตย์ จะยังคงแพร่พลังงานออกมา ในอัตรา ที่เท่ากันนี้ได้อีกนานหลายพันล้านปี

     ชื่อของดาวเคราะห์ทั้ง 9 ดวงยกเว้นโลก ถูกตั้งชื่อตามเทพของชาวกรีก เพราะเชื่อว่าเทพเหล่านั้นอยู่บนสรวงสวรค์ และเคารพบูชาแต่โบราณกาล ในสมัยโบราณจะรู้จักดาวเคราะห์เพียง 5 ดวงเท่านั้น(ไม่นับโลกของเรา) เพราะสามารถเห็นได้ ด้วยตาเปล่าคือ ดาวพุธ ดาวศุกร์ ดาวอังคาร ดาวพฤหัส ดาวเสาร์ ประกอบกับดวงอาทิตย์ และดวงจันทร์ รวมเป็น 7 ทำให้เกิดวันทั้ง 7 ในสัปดาห์นั่นเอง และดาวทั้ง 7 นี้จึงมีอิทธิกับดวงชะตาชีวิตของคนเราตามความเชื่อถือทางโหราศาสตร์ ส่วนดาวเคราะห์อีก 3 ดวงคือ ดาวยูเรนัส ดาวเนปจูน ดาวพลูโต ถูกคนพบภายหลัง แต่นักดาราศาสตร์ก็ตั้งชื่อตามเทพของกรีก เพื่อให้สอดคล้องกันนั่นเอง




ทฤษฎีการกำเนิดของระบบสุริยะ

     หลักฐานที่สำคัญของการกำเนิดของระบบสุริยะก็คือ การเรียงตัว และการเคลื่อนที่อย่างเป็นระบบระเบียบของดาว เคราะห์ ดวงจันทร์บริวาร ของดาวเคราะห์ และดาวเคราะห์น้อย ที่แสดงให้เห็นว่าเทหวัตถุ ทั้งมวลบนฟ้า นั้นเป็นของ ระบบสุริยะ ซึ่งจะเป็นเรื่องที่เป็นไปไม่ได้เลย ที่เทหวัตถุท้องฟ้า หลายพันดวง จะมีระบบ โดยบังเอิญโดยมิได้มีจุดกำเนิด ร่วมกัน Piere Simon Laplace ได้เสนอทฤษฎีจุดกำเนิดของระบบสุริยะ ไว้เมื่อปี ค.ศ.1796 กล่าวว่า ในระบบสุริยะจะ มีมวลของก๊าซรูปร่างเป็นจานแบนๆ ขนาดมหึมาหมุนรอบ ตัวเองอยู่ ในขณะที่หมุนรอบตัวเองนั้นจะเกิดการหดตัวลง เพราะแรงดึงดูดของมวลก๊าซ ซึ่งจะทำให้ อัตราการหมุนรอบตัวเองนั้น จะเกิดการหดตัวลงเพราะแรงดึงดูดของก๊าซ ซึ่งจะทำให้อัตราการ หมุนรอบตังเอง มีความเร็วสูงขึ้นเพื่อรักษาโมเมนตัมเชิงมุม (Angular Momentum) ในที่สุด เมื่อความเร็ว มีอัตราสูงขึ้น จนกระทั่งแรงหนีศูนย์กลางที่ขอบของกลุ่มก๊าซมีมากกว่าแรงดึงดูด ก็จะทำให้เกิดมีวงแหวน ของกลุ่มก๊าซแยก ตัวออกไปจากศุนย์กลางของกลุ่มก๊าซเดิม และเมื่อเกิดการหดตัวอีกก็จะมีวงแหวนของกลุ่มก๊าซเพิ่มขึ้น ขึ้นต่อไปเรื่อยๆ วงแหวนที่แยกตัวไปจากศูนย์กลางของวงแหวนแต่ละวงจะมีความกว้างไม่เท่ากัน ตรงบริเวณ ที่มีความ หนาแน่นมากที่สุดของวง จะคอยดึงวัตถุทั้งหมดในวงแหวน มารวมกันแล้วกลั่นตัว เป็นดาวเคราะห์ ดวงจันทร์ของดาว ดาวเคราะห์จะเกิดขึ้นจากการหดตัวของดาวเคราะห์ สำหรับดาวหาง และสะเก็ดดาวนั้น เกิดขึ้นจากเศษหลงเหลือระหว่าง การเกิดของดาวเคราะห์ดวงต่างๆ ดังนั้น ดวงอาทิตย์ในปัจจุบันก็คือ มวลก๊าซ ดั้งเดิมที่ทำให้เกิดระบบสุริยะขึ้นมานั่นเอง นอกจากนี้ยังมีอีกหลายทฤษฎีที่มีความเชื่อในการเกิดระบบสุริยะ แต่ในที่สุดก็มีความเห็นคล้ายๆ กับแนวทฤษฎีของ Laplace ตัวอย่างเช่น ทฤษฎีของ Coral Von Weizsacker นักดาราศาสตร์ฟิสิกส์ชาวเยอรมัน ซึ่งกล่าวว่า มีวง กลมของกลุ่มก๊าซและฝุ่นละอองหรือเนบิวลา ต้นกำเนิดดวงอาทิตย์ (Solar Nebular) ห้อมล้อมอยู่รอบดวงอาทิตย์ ขณะที่ดวงอาทิตย์เกิดใหม่ๆ และ ละอองสสารในกลุ่มก๊าซ เกิดการกระแทกซึ่งกันและกัน แล้วกลายเป็นกลุ่มก้อนสสาร ขนาดใหญ่ จนกลายเป็น เทหวัตถุแข็ง เกิดขั้นในวงโคจรของดวงอาทิตย์ ซึ่งเราเรียกว่า ดาวเคราะห์ และดวงจันทร์ของ ดาวเคราะห์นั่นเอง



      ระบบสุริยะของเรามีขนาดใหญ่โตมากเมื่อเทียบกับโลกที่เราอาศัยอยู่ แต่มีขนาดเล็กเมื่อเทียบกับกาแล็กซีของเราหรือ กาแล็กซีทางช้างเผือก ระบบสุริยะตั้งอยู่ในบริเวณ วงแขนของกาแล็กซีทางช้างเผือก (Milky Way) ซึ่งเปรียบเสมือนวง ล้อยักษ์ที่หมุนอยู่ในอวกาศ โดยระบบสุริยะ จะอยู่ห่างจาก จุดศูนย์กลางของกาแล็กซีทางช้างเผือกประมาณ 30,000 ปีแสง ดวงอาทิตย์ จะใช้เวลาประมาณ 225 ล้านปี ในการเคลื่อน ครบรอบจุดศูนย์กลาง ของกาแล็กซี ทางช้างเผือกครบ 1 รอบ นักดาราศาสตร์จึงมี ความเห็นร่วมกันว่า เทหวัตถุทั้ง มวลในระบบสุริยะไม่ว่าจะเป็นดาวเคราะห์ทุกดวง ดวงจันทร์ของ ดาวเคราะห์ ดาวเคราะห์น้อย ดาวหาง และอุกกาบาต เกิดขึ้นมาพร้อมๆกัน มีอายุเท่ากันตามทฤษฎีจุดกำเนิดของระบบ สุริยะ และจาการนำ เอาหิน จากดวงจันทร์มา วิเคราะห์การสลายตัว ของสารกัมมันตภาพรังสี ทำให้ทราบว่าดวงจันทร์มี อายุประมาณ 4,600 ล้านปี ในขณะเดียวกัน นักธรณีวิทยาก็ได้คำนวณ หาอายุของหินบนผิวโลก จากการสลายตัว ของอตอม อะตอมยูเรเนียม และสารไอโซโทป ของธาตุตะกั่ว ทำให้นักวิทยาศาสตร์เชื่อว่า โลก ดวงจันทร์ อุกกาบาต มีอายุประมาณ 4,600 ล้านปี และอายุของ ระบบสุริยะ นับตั้งแต่เริ่มเกิดจากฝุ่นละอองก๊าซ ในอวกาศ จึงมีอายุไม่เกิน 5000 ล้านปี ในบรรดาสมาชิกของระบบสุริยะซึ่งประกอบด้วย ดวงอาทิตย์ ดาวเคราะห์ ดาวเคราะห์น้อย ดวงจันทร์ ของดาวเคราะห์ดาวหาง อุกกาบาต สะเก็ดดาว รวมทั้งฝุ่นละองก๊าซ อีกมากมาย นั้นดวงอาทิตย์และดาวเคราะห์ 9 ดวง จะได้รับความสนใจมากที่สุดจากนักดาราศาสตร์ 




ดาวเคราะห์ (Planets)

     ดาวเคราะห์ หมายถึง ดาวที่ไม่มีแสงสว่างในตัวเอง แต่สะท้อนแสงอาทิตย์ส่องเข้าไปตาเรา ดาวเคราะห์ แต่ละดวง มีขนาดและจำนวนดวงจันทร์บริวารไม่เท่ากัน อยู่ห่างจากดวงอาทิตย์เป็น ระยะทางต่างกัน และดวง ต่างก็อยู่ในระบบสุริยะ โดยหมุนรอบตัวเองโคจรรอบ ดวงอาทิตย์ด้วย ความเร็วต่างกันไป จากการศึกษา เรื่องราว เกี่ยวกับดาวเคราะห์โดยใช้โลกเป็นหลักในการแบ่ง

     ดาวเคราะห์ เป็นดาวที่ไม่มีแสงในตัวเอง ไม่เหมือนกับดวงอาทิตย์ หรือดาวฤกษ์ ซึ่งสามารถส่องสว่างด้วยตนเองได้ แต่เราสามารถมองเห็นดาวเคราะห์ได้ เนื่องจากการที่ดาวเคราะห์ สะท้อนแสงจากดวงอาทิตย์ เข้าสู่ตาของเรานั่นเองแม้ดาวเคราะห์ในระบบสุริยะจักรวาลของเรา จะมีถึง 8 ดวง (ไม่รวมโลก) แต่เราสามารถมองเห็นได้ ด้วยตาเปล่า เพียง 5 ดวงเท่านั้น คือ ดาวพุธ, ดาวศุกร์, ดาวอังคาร, ดาวพฤหัส และดาวเสาร์ เท่านั้น ซึ่งชาวโบราณเรียก ดาวเคราะห์ทั้งห้านี้ว่า "The Wandering Stars" หรือ "Planetes" ในภาษากรีก และเรียกดวงอาทิตย์ และดวงจันทร์ ทั้งสองดวงว่า "The Two Great Lights" ซึ่งเมื่อรวมกันทั้งหมด 7 ดวง จะเป็นที่มาของชื่อวัน ใน 1 สัปดาห์ นั่นเอง



ดาวเคราะห์ทั้ง 9 สามารถแบ่งออกเป็นกลุ่มๆ ได้ดังนี้

1. แบ่งตามลักษณะทางกายภาพ




     -  ดาวเคราะห์ชั้นใน (Inner or Terrestrial Planets): จะเป็นกลุ่มดาวเคราะห์ ที่อยู่ใกล้ดวงอาทิตย์มากกว่าอีกกลุ่ม เป็นดาวเคราะห์ที่เย็นตัวแล้วมากกว่า ทำให้มีผิวนอกเป็นของแข็ง เหมือนผิวโลกของเรา จึงเรียกว่า Terrestrial Planets (หมายถึง "บนพื้นโลก") ได้แก่ ดาวพุธ (Mercury), ดาวศุกร์(Venus), โลก (Earth) และดาวอังคาร (Mars) ซึ่งจะใช้แถบของ ดาวเคราะห์น้อย (Asteroid Belt) เป็นแนวแบ่ง


     ภาพแสดงระยะทางเฉลี่ย ของดาวเคราะห์ชั้นใน จากดวงอาทิตย์ โดยที่ Light Minutes หมายถึง ระยะเวลาที่แสง เดินทางจากดวงอาทิตย์ มาถึงดาวเคราะห์นั้น (หน่วยเป็นนาที), และ Astronomical Units หมายถึง ระยะทาง ในหน่วยดาราศาสตร์ (AU)


ดาวเคราะห์ชั้นนอก (Outer or Jovian Planets): จะเป็นกลุ่มดาวเคราะห์ ที่อยู่ไกลดวงอาทิตย์มากกว่าอีกกลุ่ม เป็นดาวเคราะห์ที่เพิ่งเย็นตัว ทำให้มีผิวนอก ปกคลุมด้วยก๊าซ เป็นส่วนใหญ่ เหมือนพื้นผิวของดาวพฤหัส ทำให้มีชื่อเรียกว่า Jovian Planets (Jovian มาจากคำว่า Jupiter-like หมายถึง คล้ายดาวพฤหัส) ได้แก่ ดาวพฤหัส (Jupiter), ดาวเสาร์ (Saturn), ดาวยูเรนัส (Uranus), ดาวเนปจูน (Neptune) และดาวพลูโต (Pluto)


     ภาพภาพแสดงระยะทางเฉลี่ย ของดาวเคราะห์ชั้นนอก จากดวงอาทิตย์ โดยที่ Light Hours หมายถึง ระยะเวลาที่แสง เดินทางจากดวงอาทิตย์ มาถึงดาวเคราะห์นั้น (หน่วยเป็นชั่วโมง) และ Astronomical Units หมายถึง ระยะทาง ในหน่วยดาราศาสตร์ (AU)


2. แบ่งตามวงทางโคจรดังนี้ คือ

     - ดาวเคราะห์วงใน (Interior planets) หมายถึงดาวเคราะห์ที่อยู่ใกล้ดวงอาทิตย์มากกว่าโลก ได้แก่ดาวพุธ และดาวศุกร์

     - ดาวเคราะห์วงนอก (Superior planets) หมายถึง ดาวเคราะห์ที่อยู่ถัดจากโลกออกไป ได้แก่ ดาวอังคาร ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส ดาวเนปจูน และดาวพลูโต



3. แบ่งตามลักษณะพื้นผิว ดังนี้



     - ดาวเคราะห์ก้อนหินได้แก่ ดาวพุธ ดาวศุกร์ โลก และดาวอังคาร ทั้ง 4 ดวงนี้มีพื้นผิวแข็งเป็นหิน มีชั้นบรรยากาศบางๆ ห่อหุ้ม ยกว้นดาวพุธที่อยู่ใกล้ดวงอาทิตย์ที่สุดไม่มีบรรยากาศ


-  ดาวเคราะห์ก๊าซ ได้แก่ ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน จะเป็นก๊าซทั่วทั้งดวง อาจมีแกนหินขนาดเล็ก อยู่ภายใน พื้นผิวจึงเป็นบรรยากาศที่ปกคลุมด้วยก๊าซมีเทน แอมโมเนีย ไฮโดรเจน และฮีเลียม
(สำหรับดาวพลูโตนั้นยังสรุปไม่ได้ว่าเป็นพวกใด เนื่องจากยังอยู่ห่างไกลจากโลกมาก)